Intestinal Na+, K+, 2Cl− cotransporter 2 plays a crucial role in hyperosmotic transitions of a euryhaline teleost

نویسندگان

  • Andrew J. Esbaugh
  • Brett Cutler
چکیده

Euryhaline fishes, such as the red drum (Sciaenops ocellatus), must quickly transition between hyperosmotic and hypoosmotic physiological strategies. When freshwater individuals transition to seawater they are exposed to increased diffusive water loss and ion gain. To maintain osmoregulatory balance these animals must drink and absorb seawater through the intestine, followed by ion excretion at the gills. The ability of fishes to transition between strategies can limit the magnitude of osmotic shock that can be tolerated. Here, we demonstrate that red drum can tolerate direct transfer from freshwater to full-strength seawater with marginal impacts on osmotic balance, as indicated by plasma and muscle ion concentration, as well as muscle water. Seawater transition is concurrent with a significant increase in intestinal fluid volume. Typical patterns of osmoregulatory plasticity were observed in the gill with increased expression of nkcc1 and cftr Expression changes in the anterior intestine were observed after 24 h for nkcc2 with smaller and later responses observed for slc26a3, slc26a6, and nbc Immunofluorescence staining demonstrated similar patterns of NKCC localization in freshwater and seawater intestines; however, reduced basolateral staining of V-type ATPase was observed in seawater. Electrophysiological preparations demonstrated that seawater fish had increased absorptive current in the anterior intestine, which was significantly reduced in the presence of 10 μmol/L bumetanide. Overall, these results suggest that nkcc2 plays a crucial role during hyperosmotic transitions, and may be a more important complement to the well-known bicarbonate secretion pathway than generally considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gill Na(+)-K(+)-2Cl(-) cotransporter abundance and location in Atlantic salmon: effects of seawater and smolting.

Na(+)-K(+)-2Cl(-) cotransporter abundance and location was examined in the gills of Atlantic salmon (Salmo salar) during seawater acclimation and smolting. Western blots revealed three bands centered at 285, 160, and 120 kDa. The Na(+)-K(+)-2Cl(-) cotransporter was colocalized with Na(+)-K(+)-ATPase to chloride cells on both the primary filament and secondary lamellae. Parr acclimated to 30 par...

متن کامل

The role of chloride transport in the control of the membrane potential in skeletal muscle--theory and experiment.

We present a model for the control of the transmembrane potential of mammalian skeletal muscle cell. The model involves active and passive transport of Na(+), K(+), and Cl(-). As we check the model against experimental measurements on murine skeletal muscle cells, we find that the model can account for the observed bistability of the transmembrane potential at low extracellular potassium concen...

متن کامل

Expression of the Na-K-2Cl Cotransporter in Branchial Mitochondrion- Rich Cells of Mozambique Tilapia (Oreochromis mossambicus) Subjected to Varying Chloride Conditions

733 T he Na-K-2Cl cotransporter (NKCC) mediates the coupled movements of Na, K, and Clacross plasma membranes of animal cells. The NKCC plays an important role in ion movements across polarized epithelia and is also known to be involved in regulating cell volume and intracellular Cllevels (Lytle and Forbush 1996, Haas and Forbush 1998). The NKCC is a member of the Na-coupled group of cation-chl...

متن کامل

Euryhaline pufferfish NBCe1 differs from nonmarine species NBCe1 physiology.

Marine fish drink seawater and eliminate excess salt by active salt transport across gill and gut epithelia. Euryhaline pufferfish (Takifugu obscurus, mefugu) forms a CaCO(3) precipitate on the luminal gut surface after transitioning to seawater. NBCe1 (Slc4a4) at the basolateral membrane of intestinal epithelial cell plays a major role in transepithelial intestinal HCO(3)(-) secretion and is c...

متن کامل

Regulation of Na(+)-K(+)-2Cl- cotransporter activity in rat skeletal muscle and intestinal epithelial cells.

In mammalian cells, Na(+)-K(+)-2Cl- cotransporter activity participates in regulation of ion and volume homeostasis. This makes NKCC indispensable for normal cell growth and proliferation. We recently reported the existence of two mechanisms that can regulate NKCC activity in mature skeletal muscle. In isosmotic conditions, signaling through ERK MAPK pathway is necessary, while inhibition of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2016